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Abstract

Cancer research is pivotal for understanding and combating the disease, with
cell research playing a crucial role due to the genetic mutations leading to tu-
mors. However, manual analysis of cell images is time-consuming and error-
prone. Our project proposes to develop an advanced system for understand-
ing variations in chromosome numbers and structures. Our project targets
the development of an imaging system to accurately segment individual chro-
mosomes within cell images, which addresses the key issue of past systems
that weren’t able to do so. It’s especially important because cells with abnor-
mal chromosome counts contribute to cancer growth by changing the number
of oncogenes. To create our imaging system, we decided to transition from
semantic segmentation to instance segmentation in order to delineate indi-
vidual chromosomes. This approach contrasts with existing methods, such as
ecSeg, which, while useful for identifying chromosome clusters, falls short in
accurately quantifying individual chromosomes. Our project aims to bridge
this gap by leveraging advanced computational methods to develop optimal
bounding boxes for each chromosome, facilitating precise identification of
the chromosome centers. The anticipated outcome is a robust tool capable
of providing detailed chromosomal profiles in cancer cells during metaphase,
thereby contributing to a deeper understanding of cancer genetics and poten-
tially unveiling new avenues for diagnosis and treatment.
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1 Introduction
Cancer cells have been shown to have genetic mutations that lead to uncontrolled cell di-
vision that can often lead to the creation of tumors (ChemoMetec 2199). This happens
through oncogenes, a mutated gene that has the potential to turn cancerous, that is car-
ried in extrachromosomal DNA, also known as ecDNA (Turner 2017). The analysis of cells,
particularly through the examination of chromosomes, is a cornerstone in understanding
cancer’s genetic basis. However, this analysis is fraught with challenges, including the
labor-intensive and error-prone nature of manual cell image analysis. Our project seeks to
address these challenges by developing an imaging system designed to detect individual
chromosomes in metaphase cell images with high precision. This is crucial as the replica-
tion of ecDNA, which often accompanies the formation of new chromosomes, results in the
amplification of oncogenes, thereby increasing the malignancy potential of cancer cells.

EcDNA has been shown to amplify certain oncogenes that cause cancer. EcDNA refers to the
DNA molecules that exist outside of the cell’s chromosomal DNA. These ecDNA are known
to segregate unevenly, leading to high copy numbers in cells and evident across many types
of cancer (Turner 2017). But why do we care about ecDNA? It’s been discovered that onco-
gene amplification, an increase in copy number of a specific gene that can give cancer a
growth advantage, can occur in ecDNA. The ratio of ecDNA to chromosomes can give us an
idea of whether a cell is cancerous or not, with higher ratios being more probable.

We will start by leveraging a tool that already exists, ecSeg. EcSeg is an extrachromosomal
segmentation system that discerns chromosomes in fluorescence microscopy images using
semantic segmentation (Rajkumar et al. 2019). We will use this system to identify chro-
mosomes and then create our own system that uses the idea of instance segmentation for
identifying and characterizing individual chromosomes in the images. EcSeg will be able
to tell us what is and is not a chromosome, while our segmentation system will find centers
of individual instances, allowing us to count how many are in each image.

Semantic vs. Instance Segmentation

Figure 1: Semantic segmentation identifies the class of a person, where instance segmen-
tation creates boundaries and identifies each person individually, allowing us to count how
many are in the group (Team 2023). This is the concept we’re using but instead, we’re mak-
ing it a semantic segmentation problem, where we find the centers of the chromosomes and
individually identify them that way.
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This is made possible due to the FISH imaging used to obtain the images. FISH imaging,
meaning fluorescence in situ hybridization, is a technique that allows us to identify and lo-
cate specific sequences of DNA in a cell (Rajkumar et al. 2019). To do this, probes of varying
wavelengths are used to bind to specific sequences of DNA. When these probes attach to
their targets in cells and absorb a certain frequency of light, they appear to be fluorescent,
which can be easily detected when taking photos or when observed under a microscope. In
general, FISH imaging is useful for scientists to help understand a cell’s structure and gene
expression, while in the context of ecDNA, it will allow us to locate and begin counting and
sectioning chromosomes within cells.

DAPI staining solution is one of the most commonly used fluorescent probes in FISH imag-
ing. While all fluorescent probes share the purpose of staining certain parts of a cell or se-
quences of DNA, DAPI only stains DNAmaking it useful for staining cell nuclei (B Tarnowski
1991). This allows us to look at and segment cells.

Individually identifying chromosomes and ecDNA in cancerous cells is an integral part of
cellular research and developing a system to do this relieves lots of time from researchers.
There exist lots of challenges with this task, including the overlapping of chromosomes,
along with different sizes, shapes, and image qualities that will require unique techniques
to be used. Similar research has been conducted to tackle this problem each with its own
unique approaches. Our approach utilizes a tool we already have - ecSeg - to identify
ecDNA and clusters of chromosomes that haven’t been counted as individual chromosomes
and further develop a model to do so.

1.1 Relevant Papers
One of the most relevant papers to our project is the paper of Faster R-CNN (Shaoqing Ren
2016). It highlights the challenges of region-based CNNs and the importance of efficient
region proposal methods. The introduction of novel Region Proposal Networks (RPNs) is
proposed as an effective solution. RPNs predict region proposals, unifying with Fast R-CNN
object detection networks. The Faster R-CNN object detection system consists of a deep fully
convolutional network for proposing regions and the Fast R-CNN detector for using these
proposed regions. The RPN module guides the Fast R-CNN where to focus. It generates
rectangular object proposals from an input image using a fully convolutional network. To
generate region proposals, a small network slides over the convolutional feature map and
produces lower dimensional features, which are then processed by fully connected layers
for box regression and box classification.

Another relevant paper to our project is the paper on NuSeT, or Nuclear Segmentation
Tool. NuSeT is a tool used to segment normal cells from their nucleus. It creates a binary
segmentation of cell images, meaning that it can detect what is and is not a cell, but does
not individually identify them (Yang et al. 2020). This paper is highly relevant, as the U-
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Net (Olaf Ronneberger 2015) model that we are using is derived from the work done with
NuSeT.

Another relevant paper to our chromosome segmentation is about segmenting FISH im-
ages (Cao, Deng and Wang 2012). Our project contains a very similar idea in that we are
both segmenting chromosomes in FISH images, but theirs focuses on the segmentation and
classification of chromosomes in different classes, while our tool will be specialized to dis-
tinguish individual chromosomes. In addition, the methods used in this paper to segment,
Fuzzy C-means Clustering, will not be our algorithm of choice (Cao, Deng andWang 2012).

The research done on automatic nuclei segmentation for cancer detection, is work towards
a very similar goal to ours: early and accurate cancer detection (Kaustav Nandy 2199a).
Similarly, they use FISH images to attempt to segment cell nuclei. However, while the con-
cepts are fairly similar, the primary difference is in the datasets. The dataset used to train
their model is a mix of cancerous and non-cancerous tissue, while our model will primarily
focus on cancerous cells in metaphase, with most of our data coming from a cell line. Also,
the images in our dataset have been treated using various cytogenetics solutions, while the
tissue used in the paper has not.

Finally, as we’re using the tool ecSeg to identify the chromosomes in our images, the paper
on ecSeg (Rajkumar et al. 2019) is highly relevant. It primarily describes the tool ecSeg
and what its primary use cases are, as well as gets into specifics about its implementation
and reliability.

1.2 Description of Relevant Data
Our training data comes from the (Turner 2017) paper, this is the data from ecSeg, which
focuses on extrachromosomal oncogene amplification research. A majority of the cells were
produced on a cell line, where cells were cultured and propagated in a petri dish, meaning
that they were grown and replicated in a controlled environment. The rest of the data
came from neurospheres and direct tissue samples. Tissue samples were obtained from the
Moores Cancer Center Biorepository Tissue Shared Resource. Patient consent was obtained
and all samples were de-identified (?). All obtained Institutional Review Board approval.
DAPI was applied twice tometaphase cells in slides to visualize DNA and capture the images.
We passed these cell images into a trained U-Net model from ecSeg to generate featuremaps
to train our model.

2 Methods
The core task of our model is to transition from semantic to instance segmentation, focusing
on identifying and counting individual chromosomes by their centers. To aid in this task,
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we followed the Faster R-CNN architecture (Shaoqing Ren 2016) to create a model suitable
for the task of segmentation. We settled on the architecture of Faster R-CNN due to its high
accuracy, something that is crucial for medical imaging tasks, and its use of feature maps,
something we had pre-trained through the work of our mentor.

Faster R-CNN Architecture

Figure 2: Faster R-CNN Structure that we implemented for our code. From (Shaoqing Ren
2016)

We created a model to identify valid chromosome centers from chromosomes in cell images.
Our model takes cancer cell images as input, which are then processed into feature maps
using a pre-trained convolutional neural network from ecSeg (Rajkumar et al. 2019). This
convolutional neural network is built on an architecture called U-Net, and is specialized for
biomedical imaging (Olaf Ronneberger 2015). It provides high dimensional representation
of the input images crucial for the rest of our tasks, and for the purpose of our model, helps
separate chromosomal and non-chromosomal regions within a cell image. Our model out-
puts the predicted centers of chromosomes.

Before we began implementing our model, we created a dataset for training our model.
This dataset used the Turner et al. images described in the above section. We passed these
images into the U-Net to create feature maps for the images. Next, we filtered these fea-
ture maps to only include chromosome components, as ecSeg is also able to identify cell
nuclei and extrachromosomal DNA. Using these filtered feature maps, we generated bound-
ing boxes around connected components using the scikit-image library (ski 2199b). From
there, wemoved on to finding valid chromosome centers in the images. To classify a pixel as
a valid center, we assessed the Intersection Over Union (IoU) score between anchor boxes,
drawn around each pixel, and the bounding boxes from our connected components. If an

6



anchor box had an IoU score that exceeded 0.6, it would be considered. We used anchor
boxes of various width and height ratios including various combinations of 15, 20, 25, and
30, which we derived after plotting the distribution of bounding box areas.

Chromosome Component Sizes

Figure 3: Chart shows a distribution of the chromosome component sizes in our cell images.
While the data is skewed left, the component sizes are shown to be highly variable, making
it difficult for us to find suitable anchor sizes.

The anchor sizes we chose had to be specific, as our anchors being too large or small would
make it impossible for them to meet our IoU threshold. The presence of multiple valid cen-
ters around a single chromosome was expected due to variability in chromosome shapes
and sizes, so our goal was to identify regions sufficient for individual chromosome segmen-
tation rather than pinpointing exact, single pixel centers. We used the chromosome centers
generated by our anchor boxes as the ground truth for the cell images.

To train our model, we first filtered our dataset to only include images with valid centers
above a certain threshold. We arbitrarily chose 100, as we felt like 100 pixels as valid cen-
ters would be enough to accurately represent that chromosomes are within the data. From
there, we further separated the data into 90% training, 5% validation, and 5% test. We
randomly sampled 100 true centers and 100 false centers, and used the Adam optimization
algorithm (Diederik Kingma 2017) to tune our model. The Adam optimization algorithm
was chosen due to its ability to handle high-dimensional data and low overhead. Our model
uses two convolutional layers, a 3x3 convolution layer with 512 output channels, and a 1x1
convolution layer with 64 out channels. These numbers were chosen with respect to the
original Faster R-CNN paper. The U-Net model that is used to create our input convolves
many times over the same data, allowing us to use these smaller kernel sizes, as the in-
dividual pixels all contain information about the surrounding pixels. To validate model
performance, we used binary cross entropy loss (BCE) and our validation set. The loss
function is specific for binary classification tasks, and is effective as it not only penalizes
incorrect classifications but also punishes classifications with low confidence. As we saw
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that our validation loss was fairly similar to our training loss, that is, around .104 against
.11, we concluded that our model was tuned fairly.

3 Results
Using a binary cross-entropy loss while training our Region Proposal Network (RPN), we
observed the loss converging from approximately 0.18 to 0.11. We visualized the train-
ing loss over steps. This visualization demonstrates an initial sharp decline followed by a
gradual convergence, suggesting effective model learning over iterations.

Training Loss per 500 Steps

Figure 4: Chart shows training loss per 500 steps.
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When assessing loss over epoch, the model exhibited a consistent decrease from 0.14 to
0.11 over the course of 10 epochs. The decline shows the model’s progressive refinement
in accurate chromosome center identification with each epoch.

Training Loss per Epoch

Figure 5: Chart shows the training loss per epoch.

On our test set, we were able to achieve a similar binary cross-entropy loss value of about
0.11, indicating that ourmodel was not just fit well to the training data. Ourmodel achieved
a high true positive rate of 97% and a true negative rate of 95%, indicating a strong pre-
dictive performance for both chromosome center presence and absence. False positives and
false negatives were contained at 4.9% and 2.5% respectively, which reinforces the model’s
precision.

Table 1: Performance Metrics
Metric Value
Precision 0.952
Recall 0.975

Accuracy 0.963
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Confusion Matrix

Figure 6: Chart shows the confusion matrix for predictions generated by the model

It was noted that the model’s performance was less robust when identifying larger con-
nected components, which were occasionally missed. The large bounding boxes created by
overlapping or otherwise connected chromosomes resulted in low IoU scores. As such, our
initial creation of the dataset was unable to identify valid centers within those bounding
boxes, suggesting a need to adjust the anchor box sizing or the IoU threshold to accommo-
date a broader range of component sizes.

4 Conclusion
Though we achieved high accuracy rates, there are possibilities for future improvements.
Hand labeling the images to show more accurate bounding boxes which represent our true
labels, would allow for more accurate IoU scores, and thus more accurate and confident
results. This would possibly capture more results, as some of our bounding boxes were
too large to capture any IoU greater than 0.6. In our implementation, we’ve only tried us-
ing linear convolutional layers. While we believe that our model, as it stands, is accurate,
there are possibilities that linear layers, or such few linear layers, are not able to capture
chromosome centers as well as non-linear layers or a model with linear activation could.
Enhancements to the model could include an extension where the output from the RPN is
transformed into an instance segmentation output. This modification would allow for the
precise segmentation of each pixel, distinguishing individual chromosomes with greater
accuracy. This could provide detailed outlines of each chromosome, extracting more data
and providing more aid to researchers. The count of chromosomes could also be an addi-
tion to the end of the model for statistical analysis.

Finally, we could evaluate the relationship between chromosome counts and oncogenes in
the cell images. By identifying if a cell has more than the normal chromosome count of
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46, we could quickly and efficiently identify cancerous cells. This ability would allow re-
searchers and doctors to find the best cancer treatment for the patient according to their
chromosome count and cancer diagnosis.

Though there is still more work to be done, this is a step in the right direction and provides
yet another foundation for researchers to build on. The exploration of chromosomes in
cancerous cells is extremely important and this model provides an easy and faster way to
do so.
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